Silverstone Element Series ST40EF 400Watt Netzteil |
 |
Silverstone Element Series ST40EF 400Watt Netzteil
Einleitung:
In den letzten Netzteiltests hatten wir nahezu ausschließlich extremen Leistungs-Boliden für Übertakter und SLI/Crossfire-Systeme auf den Zahn gefühlt. Diesmal stellen wir euch ein Netzteil vor, welches für die große Masse der Endanwender interessant sein dürfte: das Silverstone Element ST40EF.
Dieses Netzteil weist vernünftige Leistungsdimensionierungen auf und möchte gleichzeitig durch einen hohen Wirkungsgrad und betont leises Betriebsverhalten punkten. Klingt zumindest auf dem Papier sehr vernünftig, darum haben wir uns dieses Exemplar noch vor Weihnachten geordert, denn eventuell ist ja der eine oder andere bei seiner Netzteilbestückung noch unschlüssig.
Wie sich das Silverstone Netzteil in der Praxis bewährt hat, erfahrt ihr wie immer in unserem ausführlichen Test, viel Vergnügen beim Lesen...
Lieferumfang:
Zum Vergrößern bitte die Bilder anklicken !
- Netzteil in Retailverpackung.
- Kaltgeräteanschlußkabel.
- Befestigungsschrauben.
- Adapterkabel.
- Kurzanleitung.
Die technischen Daten Netzteil:
- Gehäusematerial: Stahl.
- 400 Watt Gesamtleistung.
- 130 Watt kombinierte Ausgangsleistung (+3,3 und +5 Volt).
- 30A >336 Watt kombinierte Ausgangsleistung (+12 VoltV1 bis 12 VoltV4).
- universeller Weitbereichseingang: 110-240 VAC für unterschiedliche Stromnetze.
- maximale Belastbarkeit der einzelnen Strom-Schienen:
- +3,3 Volt: 20 A
- +5,0 Volt: 14 A
- +12 Volt erste Leitung: 16 A.
- +12 Volt zweite Leitung: 18 A.
- +5 Volt Standby: 3 A
- ATX Version: 2.0, 2.1, 2.2.
- EMV-geschirmte Kabelstränge.
- Aktiv PFC (99%).
- 1x 120mm Lüfter.
- eloxierte Kühlkörper.
- OCP (Over Current Protection) - Schutz vor Stromspitzen.
- OVP (Over Voltage Protection) - Überspannungsschutz.
- NLO (No Load Operation).
- SCP (Short Circuit Protection) - Schutz vor Kurzschlüssen.
- Standard-PS/2-Abmessungen (B×H×T): (150×86×140) mm.
- Gewicht: ca. 2,5 Kg.
- Fertigung nach RoSH Verordnung.
- MTBF: ca. 100.000 Stunden.
- aktueller Marktpreis: ca. 79,-€.
- Garantie: 2 Jahre.
Der Intel-Testrechner:
CPU |
Intel Core 2 Duo E6700 |
Mainboard |
Asus P5W DH Deluxe |
Arbeitsspeicher |
G.Skill F2-6400PHU2-2GBHZ PC6400 |
Grafikkarte |
MSI Geforce 7900GTO |
Soundkarte |
Sound Blaster X-Fi XtremeGamer Fatality |
CPU-Kühler |
Scythe Infinity |
CPU-Lüfter |
Scythe |
Festplatten System |
2x Western Digital Raptor a´150GB (10000 U/min, S-ATA) Raid-0 |
Festplatten Backup |
1x Samsung SpinPoint T133 400GB 16MB SATA II |
DVD-Brenner |
Plextor PX-760 SATA |
DVD-ROM |
Plextor PX-130A |
Gehäuse |
Cooler Master Stacker STC-T01 |
Betriebssystem |
Windows XP Prof. SP 2 PreSP3 |
Zubehör |
2x Aerocool Turbine 120mm @5Volt
|
Verarbeitung und erster Eindruck:
Zum Vergrößern bitte die Bilder anklicken !
Eine traditionell schwarze Lackierung dominiert die Optik, schick aber langweilig? das überlassen wir dem geneigten Betrachter, denn die Geschmäcker sind bekanntlich verschieden. Ergänzend dazu sollte aber erwähnt werden, das der Lack mittlerweile keine bleihaltigen Substanzen mehr enthält, ein nicht zu unterschätzender umweltschonender Aspekt.
Wabenförmige Aussparungen minimieren den Luftwiderstand der abzutransportierenden Abwärme aus dem Netzteil, was die Wirkung des Lüfters tatkräftig unterstützt.
Bedingt durch die auch in der Element Serie eingehaltene ATX-Norm sollte es beim Einbau keinerlei Probleme geben. Die Verarbeitung bewegt sich auf beinahe schon typischem sehr hohem Silverstone Niveau.
Zum Vergrößern bitte die Bilder anklicken !
Leider setzt sich ein Fauxpax auch in dieser Netzteilserie von Silverstone fort, denn eine schützende Kabelmuffe am Kabelgehäuseausgang sucht man vergebens, das kann die Konkurrenz besser...
Beim Lüfter handelt es sich um ein gleitgelagertes 120mm Exemplar von ADDA mit der Typenbezeichnung AD1212MS-A71GL. Dieser Lüfter befördert 137m³/h bei 2050 U/min und 12 Volt Ansteuerung, bei einer Geräuschentwicklung von maximal 39,1 dBA, dies verrät zumindest die Webseite von ADDA. Wie sich diese Eckdaten in der Praxis verhalten, klären wir in unserem Testkapitel, zumal ja die Thermoregelung von Silverstone den Lüfter entsprechend angepaßt steuert.
Die Qualität der Verarbeitung setzt sich auf den ersten Blick nahtlos im Inneren fort, das Platinenlayout wirkt aufgeräumt und akurat verlötet, hochwertige Komponenten versprechen eine lange Lebensdauer. Die Kühlkörper wirken zwar etwas lieblos gefräst, gegen Korrosion werden sie aber durch eine schwarze Eloxalschicht geschützt.
Das Silverstone Netzteil entspricht bereits der RoSH Umweltverordung (Restriction of certain Hazardous Substances) entsprechen, die ab Juli 2006 in Kraft getreten ist, womit eine separate Werbung auf dieses Attribut entfällt, es ist mittlerweile einfach Vorschrift...
Zum Vergrößern bitte die Bilder anklicken !
Zum Vergrößern bitte die Bilder anklicken !
An dieser Stelle wollen wir noch einmal darauf hinweisen, das ein vorhandenes Kabelmanagement grundsätzlich eine sehr sinnvolle Entwicklung darstellt, die zusätzlichen Platinen und Anschlüsse stellen aber auch u.U. das Risko von korrosionsbedingten Spannungsabfällen dar, das wollen wir nicht verschweigen, falls jemand beim Silverstone Kabelmanagement vermissen sollte.
Die ummantelte Verkabelung wurde ausreichend ausgestattet, wobei die Kabellängen von 60cm bis maximal 100cm variieren, damit sollte jedes Gehäuse problemlos zu bestücken sein.
Im Einzelnen sind folgende Anschlußmöglichkeiten vorhanden:
- 2x Floppy-Anschluss.
- 6x 4 Pin Stromstecker.
- 4x S-ATA.
- 1x PCI-Express Stromanschluß.
- 1x 12Volt ATX Stecker.
- 1x 24 Pin Mainboard-Stromanschluß.
- 1x 20/24 Pin Adapter.
Der 24 Pin Mainboard-Stromanschluß entspricht der aktuellen ATX 2.0/2.2 Norm und kann für die Verwendung auf einem 20-poligem ATX 1.3 Mainboard mit einem beiliegendem Adapterkabel entsprechend ausgerüstet werden.
Wir vermissen allerdings einen 8-poliges DUAL-CPU Stromanschluss, der zwar eigentlich nur bei Mehr-CPU-Platinen (nicht Dualcore!) benötigt wird, aber auch für ein gewöhnliches Desktop-Netzteil mittlerweile durchaus zur Standardaustattung gehören sollte, da einige Nforce-Vertreter bereits auf diese zusätzliche Stromversorgung setzen, wenn auch nicht zwingend.
Technische Aspekte zur aktuellen Netzteiltechnik:
1. Leistungsspezifikationen von Netzteilen:
Es zeigt sich immer wieder in unseren Tests, daß weder die vollmundigen Herstellerangaben auf den Typenschildern, noch die angegebenen Wattzahlen auch nur annähernd etwas über das tatsächliche Leistungsvermögen eines Netzteils aussagen! Die Erfahrung hat oft genug gezeigt, daß es auch 450 Watt Netzteile gibt, die schon bei geringster Last einbrechen und nicht im entferntesten die angegebenen Leistungsparameter abliefern können. Im Gegensatz dazu existieren sehr leistungsstarke 300 Watt Netzteile, die auch hochgerüstete Systeme durchaus ausreichend versorgen können. Es ist also offensichtlich, daß die Wattangabe absolut nichts über die Leistungsfähigkeit eines Netzteils aussagt, die aufgeklebten Herstellerangaben leider sehr oft ganz genauso wenig.
Um dergleichen zu vermeiden, greift man am besten zu leistungsseitig ausreichend dimensionierten Qualitätsnetzteilen.
Ein vor allem in der Übertaktergemeinde zentrales Problem und Qualitätskriterium ist die sogenannte "Stabilität" der einzelnen Spannungsschienen. Gerade bei qualitativ schlechteren oder schlichtweg überlasteten Netzteilen kann es dazu führen, daß die Spannungslinien von ihren Werten her einbrechen. So liefert ein Netzteil statt der erwünschten 12V dann etwa 11V und statt der benötigten 5V nur noch 4,7V. Während eine gewisse Abweichung im Bereich der Toleranz liegt (siehe ATX V2.03 Spezifikation) und vollkommen unproblematisch ist, führen gröbere Abweichungen in der Regel zu Instabilität und Systemabstürzen, die leider auch nicht immer sofort als Netzteilproblem verifizierbar sind...
Grundsätzlich ist es so:
Bei einem PC-Netzteil wird die Leistung oft mit der Angabe "Total DC Output" (DC steht für Gleichstrom) ausgewiesen. Dieser Maximal-Wert sagt aus, wieviel Watt das Netzteil insgesamt auf allen Leitungen liefern kann. "Combined Power" setzt sich hingegen aus der maximalen Leistung der +3,3-Volt- und +5-Volt-Leitung zusammen. Einzel belastet ist mehr möglich, aber zusammen eben nicht, da müssen dann entsprechende Abstriche hinsichtlich der Belastung gemacht werden.
Über die +12-Volt- und +5-Volt-Leitung werden u.a. Festplatten, CD-/ DVD-Drives und Disketten-Laufwerke mit Spannung versorgt. Die wichtigste Leitung ist jedoch die 3,3-Volt-Leitung, über die das Mainboard den Prozessor (CPU), den Hauptspeicher (RAM), den AGP-Bus und nahezu alle PCI-Steckkarten mit Power versorgt. Vor dem Release der ATX-Spezifikation wurde diese sog. "I/O-Spannung" aus der 5-Volt-Leitung gewandelt. Ein gut dimensioniertes Netzteil sollte ~30 Ampere auf der +5-Volt Leitung und ~25 Ampere auf der +3.3-Volt-Leitung liefern können, sowie mindestens 200 Watt Combined Power liefern.
Diese Empfehlung gilt nach wie vor wenn auch mit Abstrichen, denn mittlerweile beziehen aktuelle Komponenten ihr Lebenselixier vermehrt aus den 12 Volt Leitungen. Intel hatte seinerzeit bekanntermaßen den ATX12V Stromstecker zur Entlastung eingeführt. Mittlerweile haben es die Hersteller auf den nForce 2/3/4 und Athlon 64 Boards nachempfunden und bietet dort einen entsprechenden 12V-Anschluß an, bei aktuellen Sockel 775 Boards sieht es nicht anders aus. Bei der nicht geringen Stromaufnahme dieser Mutterbretter ein wichtiger Schritt in die richtige Richtung. Selbstverständlich sollte diese +12 Volt Schiene (mittlerweile bedingt durch ATX 2.0: mindestens 2 Schienen) ausreichend dimensioniert sein und wenigstens 15 Ampere pro 12V-Schiene liefern können, je mehr desto besser...
2. Power Factor Correction (PFC):
"Power Factor Correction" oder kurz PFC ist ein in der EU für PC-Netzteile mittlerweile vorgeschriebener Standard, um die Stromaufnahme von Geräten für das Stromnetz weniger belastend auszulegen. Schaltnetzteile beziehen den Strom in Form kurzer Impulse, was dazu führt, daß die sinusförmige Netzspannung durch die Erzeugung harmonischer Oberwellen verzerrt wird. Insgesamt ist die komplexe Lastcharakteristik eines gewöhnlichen PC-Netzteils für das Stromnetz sehr ungünstig, da eine hohe Phasenverschiebung von Spannung und Strom sowie eine allgemein hohe Verzerrung der Wellenform auftritt. Je größer diese Phasenverschiebung ist, desto niedriger ist der "Power Factor" oder Leistungsfaktor eines Gerätes: Beträgt die Phasenverschiebung zwischen Spannung und Strom 90° ist der Leistungsfaktor 0 (0%, cos(90) = 0). Tritt hingegen keine Phasenverschiebung auf, d.h. sind Spannung und Strom perfekt synchron, ist der Leistungsfaktor 1 (100%, cos(0) = 1). Zu unterscheiden ist daher die sich aus der einfachen Rechnung Spannung*Stromstärke ergebende "Scheinleistung" sowie die den Phasenwinkel berücksichtigende "Wirkleistung": Stromstärke*Spannung*Leistungsfaktor. Der Leistungsfaktor beschreibt also zugleich das Verhältnis zwischen der an den Stromanschluß übertragenen "Wirkleistung" und der vom Verbraucher tatsächlich entnommenen "Scheinleistung" (Leistungsfaktor = Wirkleistung / Scheinleistung). Je weiter der Leistungsfaktor vom optimalen Wert 1 (100%) absinkt, desto höher ist die aus dem Stromnetz entnommene sogenannte "Blindleistung".
Passiv-PFC Systeme erreichen einen Leistungsfaktor von bis zu 0,8 durch Unterdrückung der harmonischen Oberwellen mittels eines relativ simplen, passiven Bausteins. Activ-PFC Systeme hingegen beziehen das Verhältnis zwischen der bestehenden Grundschwingung und den hinzugekommenen Oberwellen, den sogenannte Klirrfaktor, mittels einer integrierten Schaltung (IC) ein und regeln die Stromaufnahme gemäß dem Spannungsverlauf, als ob eine reine Widerstands-Last ohne Phasenverschiebung (d.h. Leistungsfaktor = 1) angeschlossen wäre. Active-PFC erreicht daher einen deutlich höheren Leistungsfaktor von über 95%. Zusätzlich ermöglicht die Schaltung eine einfachere Adaption an alle Stromnetze von 85 bis 265V.
Unser bevorzugtes Gerät, um den Wirkungsgrad in Zusammenarbeit mit einem Energy Monitor 3000 zu verifizieren, ist der grafische Leistungsmesser Peak Tech 2535. Mit diesem Gerät kann man sowohl Wirkleistung >Scheinleitung als auch Blindleistung und Leistungsfaktor ermitteln.
Allgemein handelt es sich bei PFC um eine Technologie, die der Verbesserung der allgemeinen Stromversorgung dienen soll, indem die komplexe Lastcharakteristik von Verbrauchern möglichst weit an jene einfacherer Geräte angepaßt wird.
3. Worin liegen die Neuerungen der ATX12V v2.0 bzw. 2.2 Norm?
Dies ist die modernste Spezifikation für Desktop Motherboards und Netzteilen, welche wesentliche Änderungen im Vergleich zum v1.3 Standard beeinhaltet:
- Die SATA Anschlüsse sind jetzt offiziell zertifiziert.
- Der Motherboard Hauptanschlussstecker wurde von 20 auf 24 Pins erweitert, um den Stromverbrauch auf dem PCI Express Bus besser verarbeiten zu können.
- Die neuen Spezifikationen fordern unter Volllast und typischer Last (50 Prozent) lediglich 70 Prozent Wirkungsgrad, bei geringer Belastung (bei unbelastetem Prozessor) sind sogar nur 60 Prozent gefordert. Als Empfehlungen nennt die Spezifikation 80 Prozent im typischen Lastfall, 75 Prozent unter Volllast und 68 Prozent bei geringer Belastung. Dazu der aktuelle ATX 2.2 Netzteil Design Guide
.
Zu Thema Effizienz ist anzumerken, das sich wohl sehr wenig ändern wird, solange die überwiegende Mehrzahl der Käufer hauptsächlich auf Preis, Ausstattung und Leistung achtet und nicht bereit ist, für Energie-Effizienz mehr Geld zu bezahlen...
- Die 6 Pin Aux Stecker sind weggefallen.
- Die Schaltungstechnik wurde zu dualen 12V Ausgängen modernisiert, welches CPU und Peripheriegeräten größere Stabilität garantiert. Zusätzlich wurde die +12V Ausgangsleistung insgesamt erhöht, um den Verbrauch des PCI Express Erweiterungsteckplatz auszugleichen.
4. Belüftung Lautstärke und Effizienz:
Zwar steht heute bereits auf beinahe jeder Netzteil-Verpackung werbewirksam "Silent", gut beraten ist man damit zwangsläufig allerdings noch nicht. Oft entpuppt sich, was beim Start noch erstaunlich leise klang bei entsprechender Belastung als störende Lärmquelle. Ursache dafür sind zumeist nicht nur die hochdrehenden, lastgesteuerten Lüfter, sondern oft auch ein von den überlasteten Spannungswandlern verursachtes Pfeifen oder Brummen, das nicht selten von heftigen Vibrationen begleitet wird.
Allgemein läßt sich im Hinblick auf Lautstärke und Belüftung bei Netzteilen folgendes attestieren:
Moderne ATX- Netzteile verfügen je nach Bauart und Qualität über eine Wirkungsgrad von rund 60-80%. Daraus ergibt sich, daß in Situationen, wo das Netzteil 150W Strom ans System liefert, im Gerät gleichzeitig gut 60Watt an Wärmeenergie entstehen, die abgeführt werden müssen um eine zu Instabilität führende Überhitzung zu vermeiden - ein nicht unbeträchtlicher Wert! Die meisten aktuellen Netzteile verfügen dafür entweder über eine Last-oder Temperatursteuerung (oder eine Kombination), d.h. die Drehzahl der Lüfter wird automatisch angepaßt - die Lautstärke steigt mit Last bzw. Temperatur. Alternativ gibt es Modelle mit manueller oder halbautomatischer Regelung. Hier ist jedoch Vorsicht geboten: Zu viel Lärmempfindlichkeit wird oft mit Überhitzung bezahlt. Wer also seine Hardware nicht riskieren oder dauernd zur Anpassung der Drehzahl hinter den Rechner krabbeln möchte, müßte diese zur Sicherheit entsprechend hoch einstellen und ist daher mit einem guten automatisch gesteuerten Netzteil bedeutend besser beraten.
Klar ist jedenfalls, daß z.B. Belüftungskonzepte, welche vorsehen, die vom System erhitzte Luft ausschließlich durch das Netzteil abzuführen, in doppelter Hinsicht problematisch sind: Erstens wird das Netzteil schlechter gekühlt, was unter Umständen wieder zu instabilen Spannungsschienen führen kann. Zweitens müssen die Lüfter des Netzteils schneller drehen, um das gleiche Maß an Kühlung zu erzielen und werden somit zu einem stärkeren Lärmfaktor. Es sei denn man dimensioniert den Netzteillüfter grundsätzlich so, daß ein Kompromiss möglich ist, z.B. durch einen volumenintensiven 120mm oder 140mm Lüfter.
Grundsätzlich sind darum Silentnetzteile die mit einem oder 2 langsam drehenden 80mm Lüfterm daher kommen, ob ihrer Kühlleistung sehr skeptisch zu beurteilen.
5. Schutzschaltungen:
Aktuelle hochwertige Netzteile verfügen über zahlreiche Schutzmechanismen, um unsere verbaute teure Hardware vor Beschädigungen durch Kurzschlüsse, Spannungsspitzen und anders geartete Irritationen zu schützen:
- OCP (Over Current Protection) - Schutz vor Stromspitzen.
- OTP (Over Temperature Protection) - Überhitzungsschutz.
- OVP (Over Voltage Protection) - Überspannungsschutz.
- OPP (Over Power Protection) - Überlastungsschutz.
- UVP (Under Voltage Protection) - Unterspannungsschutz.
- SCP (Short Circuit Protection) - Schutz vor Kurzschlüssen.
- NLO (No Load Operation) - Schutz vor lastlosen Operationen.
Sollten eure ins Auge gefassten Netzteile, dieses Schutzmechanismen nicht beinhalten, solltet ihr von einem Kauf Abstand nehmen, denn diese Netzteile reissen bei entsprechenden Problemen nicht selten angeschlossene Hardware mit in den Abgrund...!
Die Montage:
Ein Netzteiltausch sollte auch den ungeübten Anwender vor keine größeren Probleme stellen, insofern schenken wir uns den detaillierten Ablauf, weisen aber auf wichtige Aspekte deutlich hin.
Die wichtigste Grundregel bei Bauarbeiten am eigenen Rechner ist, daß ihr alle Komponenten spannungsfrei macht.
Dazu müßt ihr als erstes das Netzteil ausschalten oder noch besser das Netzkabel abziehen.
Doch jetzt ist der Rechner noch nicht völlig spannungsfrei, da sich auf dem Mainboard und dem Netzteil noch geladene Kondensatoren befinden.
Diese Kondensatoren sollen im Betrieb Stromschwankungen ausgleichen.Normalerweise entladen sich die Bauteile von selbst, dies kann aber bis zu 10 Minuten dauern.
Wer hat aber schon so viel Zeit und möchte dies abwarten ?
Mit einem kleinem Trick könnt ihr die Restelektrizität loswerden:
Ihr müßt einfach noch einmal den Einschaltknopf drücken,nachdem ihr das Netzkabel entfernt habt.
Ihr werdet merken, daß die Lüfter nochmals kurz anlaufen und sofort wieder stillstehen.
Jetzt ist der Rechner garantiert spannungsfrei und das alte Netzteil kann problemlos gegen das Neue getauscht werden.
Vergeßt bitte nicht, euch vor den Arbeiten zu erden !
Der Test:
Vor dem Einbau des Netzteils und vor den eigentlichen Tests findet grundsätzlich eine erste Funktionskontrolle statt, den wir mit dem Power Supply Tester durchführen. Sollten sich hier bereits Probleme einstellen, wie z.B. ein nicht anlaufender Lüfter, brechen wir den Test ab...
Zum Vergrößern bitte die Bilder anklicken !
Nachdem wir unseren 12-stündigen Belastungstest abgeschlossen hatten (Prime95 und 3DMark2005 im Loop), konnten wir die Meßwerte unserer eingesetzten Testprogramme (AIDA32, Everest, SiSoftSandra, MBM) vergleichen und haben sie danach zur besseren Fehlerkorrektur gemittelt sowie mit den direkt gemessenen Multimeter-Werten verglichen, wobei die real gemessenen Werte natürlich eine größere Relevanz aufweisen, als ungenaue Software Resultate.
Die Effizienz haben wir mit Hilfe des grafischen Leistungsmessers Peak Tech 2535 und einem Energy Monitor 3000 von Voltcraft ermittelt.
Die Lautheit der Lüfter haben wir ca. 15cm vom Lüfter entfernt mit einem geliehenen ACR-264-plus Messgerät verifiziert und dabei die Umgebungsgeräusche so weit wie möglich reduziert, um das Ergebnis nicht zu verfälschen. Laut DIN-Norm sollte der Abstand von Messgerät zum Testobjekt 100cm betragen, aber da wir nicht über einen schalltoten respektive schallarmen Raum verfügen, waren Kompromisse unumgänglich.
Mit dem Digitalen Temperaturmessgerät TL-305 haben wir während sämtlicher Testdurchläufe die Abluft des Netzteils direkt per Sensor gemessen und aufgezeichnet. Somit erhält der mögliche Käufer auch eine gute Übersicht bezüglich der zu erwartenden Kühlleistung respektive Eigenkühlung des Netzteils.
Die ATX V2.03 Spezifikation lässt folgende Grenzwerte zu :
Ausgang |
Toleranz |
Umin. |
UNom. |
Umax. |
|
[%] |
Volt |
Volt |
Ampere |
+12 V* |
5 |
11,4 |
12,00 |
12,60 |
+5V |
5 |
4,75 |
5,00 |
5,25 |
+3,3V |
5 |
3,14 |
3,30 |
3,47 |
-5V |
10 |
4,50 |
5,00 |
5,50 |
-12V |
10 |
10,80 |
12,00 |
13,20 |
+5Vsb |
5 |
4,75 |
5,00 |
5,25 |
Die Testwerte des Silverstone-Netzteil:
Richtspannung |
+3.3V |
+5V |
+12V |
|
niedrigster Wert |
3,27V |
5.07V |
12,26V |
|
höchster Wert |
3,31V |
5,12V |
12,35V |
|
durchschnittlicher Wert |
3,29V |
5,09V |
12,30V |
|
Auf den ersten Blick mag die combined Power von 130 Watt für die
3,3 Volt und 5 Volt Schiene etwas knapp bemessen erscheinen, aber die Skeptiker können wir nachhaltig trösten, aktuelle Systeme belasten das Netzteil überwiegend auf den vorhandenen 12 Volt-Leitungen und dort sind 30 (336 Watt) Ampere für Systeme ohne SLI und Konsorten mehr als genug.
Leistung und Stabilität sind fern jeder Kritik, unser Rechner prozierte keine Leistungseinbrüche oder besorgniserregenden Schwankungen, egal ob Idle >Vollast, die Laststabilität stimmt in jedem Bereich.
Wie erwartet konnte unser Intel Core 2 Duo System in Verbindung mit einer 7900GTO auch unter Last nicht mehr als 270 Watt abrufen (übertaktet maximal 330 Watt).
Die Lautstärke des Lüfters ohne Last war subjektiv nicht als wahrnehmbar zu deklarieren, im Idle Modus konnten wir den Lüfter nicht identifizieren, und so ergaben sich sehr gute 24 dBA bei 1130 U/min. Unter Last und Drehzahlsteigerung des Lüfters stellt sich die Situation etwas anders dar, hier steigert sich der Lüfter auf immer noch leise 29 dBA bei 1470 U/min, da gibt es keinen Anlaß zur Kritik.
Die Netzteilelektronik trat geräuschtechnisch kaum in Erscheinung, weder Pfeiffgeräusche noch anders geartete Störgeräusche waren zu identifizieren.br>
Die Eigenkühlung des Netzteils funktioniert ausgezeichnet, auch unter Last konnten wir keine Netzteilinnenraum-Temperaturen über 42°C messen, im Idle Modus 32°C bei 20°C Zimmertemperatur. Die warme Abluft erreicht unter Last Temperaturen bis zu 41°C, das zur Information für all diejenigen, die sich über den warmen Luftstrom aus dem Netzteilgehäuse wundern. Die Werte sind absolut ok, unter 20% Last liegen diese Werte bei 29°C.
Noch eine kleine Erklärung zur dBA Definition:
Menschen hören im allgemeinen bei 1000 Hz am Besten, der dBA-Wert nimmt Bezug darauf: ein Geräusch bei 18000 Hz nimmt man entsprechend schwächer war, als eines bei 1000 Hz, und der dBA-Wert ist entsprechend darauf umgerechnet.
Bei 80% Last konnten wir eine Effizienz von knapp 85% attestieren, der beste Wert eines bei uns getesteten Silverstone Netzteils. Bei 20% Last wurden immerhin 81% Effizienz erreicht, auch eine mehr als deutliche Verbesserung im Vergleich zu anderen Modellen aus der Silverstone-Palette.
Dagegen stehen 1,8 Watt Stromverbrauch im Standbymodus (ausgeschalteter Rechner), das geht in Ordnung...
Achtung:
Wir müßen an dieser Stelle deutlich darauf hinweisen, daß die im Review angegebenen Resultate sich ausnahmslos auf den zum Test verwendeten Aufbau mit den verwendeten Test-Systemen beziehen...
Die wichtigsten Leistungsdaten und Temperaturen aller bisher von uns getesteten Netzteile im Vergleich:
Netzteil |
Ø Spannungswerte |
max. Effizienz |
Temp-Idle |
Temp-Last |
Aerocool Turbine Power ATX 450Watt |
3,35V |
5,02V |
12,19V |
74% |
30° |
38° |
be quiet! Blackline PFC Serie 1.3 350Watt |
3,35V |
5,03V |
11,99V |
70% |
35° |
44° |
be quiet! BQT P5 S1.3 470Watt |
3,33V |
5,06V |
12,09V |
70% |
35° |
43° |
be quiet! BQT P6 Dark Power 520Watt |
3,30V |
4,98V |
12,07V |
78% |
35° |
42° |
be quiet! BQT P6 Dark Power Pro 600Watt |
3,32V |
5,05V |
12,03V |
78% |
31° |
44° |
be quiet! BQT P6 Dark Power Pro 850Watt |
3,36V |
5,01V |
12,15V |
83% |
33° |
46° |
be quiet! Straight Power BQT ES-600Watt |
3,34V |
5,04V |
12,07V |
79,5% |
32° |
45° |
Enermax Coolergiant EG 485AX 480Watt |
3,33V |
5,10V |
12,06V |
69% |
35° |
47° |
Enermax Coolergiant EG565AX-VH 535Watt |
3,35V |
5,02V |
12,03V |
75% |
34° |
46° |
Enermax Coolergiant EG 701AX-VH 600Watt |
3,31V |
5,08V |
12,19V |
76% |
33° |
45° |
Enermax Liberty 500 Watt Yate-Loon NMT3 |
3,35V |
5,08V |
12,09V |
79% |
35° |
46° |
Enermax Liberty ELT 620Watt AWT |
3,36V |
5,09V |
12,13V |
79% |
34° |
45° |
Etasis ET EFN-560 550Watt |
3,28V |
4,99V |
11,96V |
78% |
51° |
58° |
NoiseMagic AcBel NMT-2 F/2GL 400Watt |
3,29V |
4,99V |
12,06V |
76% |
33° |
43° |
NorthQ NQ-4775 400Watt |
3,26V |
4,92V |
12,11V |
62% |
30° |
39° |
Revoltec Chromus II 400 Watt |
3,33V |
4,81V |
11,97V |
77% |
34° |
44° |
Seasonic S12 Energy Plus 550Watt |
3,34V |
5,03V |
12,05V |
84,5% |
32° |
42° |
Seasonic M12 600Watt |
3,35V |
5,04V |
12,14V |
82% |
32° |
42° |
Seasonic S-12 600Watt |
3,34V |
5,06V |
12,14V |
82% |
32° |
43° |
NoiseMagic Seasonic S12 500Watt F/2GML |
3,29V |
5,07V |
12,05V |
81% |
32° |
43° |
Seasonic S-12 430Watt |
3,30V |
5,03V |
12,06V |
80% |
31° |
41° |
Silverstone Strider ST56F 560Watt |
3,39V |
4,90V |
12,22V |
80% |
31° |
43° |
Silverstone Element ST40EF 400Watt |
3,29V |
5,09V |
12,30V |
85% |
32° |
42° |
Silverstone Element ST50EF 500Watt |
3,32V |
5,01V |
12,10V |
81% |
32° |
44° |
Silverstone Strider ST60F 600Watt |
3,35V |
5.03V |
12,34V |
78% |
31° |
42° |
Silverstone Strider ST75F 750Watt |
3,34V |
5.02V |
12,30V |
81% |
30° |
40° |
Silverstone Zeus ST56ZF 560Watt |
3,31V |
5.08V |
12,19V |
76% |
34° |
45° |
Silverstone Zeus ST75ZF 750Watt |
3,31V |
4,98V |
12,06V |
79% |
30° |
42° |
Tagan TG420-U02 i-Xeye 420Watt |
3,32V |
5,01V |
12,02V |
75% |
36° |
46° |
Tagan TG480-U01 480Watt |
3,39V |
5,05V |
12,05V |
72% |
35° |
46° |
Tagan TG480-U15 Easycon 480Watt |
3,32V |
5,01V |
12,10V |
75% |
34° |
46° |
Tagan TG480-U22 2Force 480Watt |
3,34V |
5,12V |
12,13V |
70% |
35° |
45° |
Tagan TG600-U25 Dualengine 600Watt |
3,29V |
5,12V |
12,22V |
79% |
34° |
44° |
Tagan TG600-U35 EasyCon XL 600 Watt |
3,37V |
5,13V |
12,15V |
79% |
34° |
44° |
|