PC-Experience - IT-Portal für Reviews, Artikel, Windows Tipps und Problemlösungen -

PC-Experience
Registerdie Foren-RegelnForen-FAQsImpressum und DatenschutzAmazon-Partnershopunser Partner-BlogSearchKalenderMitgliederlisteunsere Downloadübersichtzu unseren ArtikelnTutorialsZur Startseitezur Forenübersicht



PC-Experience » Hardware Reviews : » Reviews : » Corsair VX550W Netzteil » Hello Guest [Login|Register]
Last Post | First Unread Post Print Page | Recommend to a Friend | Add Thread to Favorites
Post New Thread Thread is closed
Go to the bottom of this page Corsair VX550W Netzteil
Posts in this Thread Author Date
 Corsair VX550W Netzteil Cerberus 26.10.2007 12:33

Author
Post « Previous Thread | Next Thread »
Cerberus $posts[username] is a male
Chefredakteur


Registration Date: 23.07.2002
Posts: 11,416
Herkunft: Lübeck

Achtung Corsair VX550W Netzteil Reply to this Post Post Reply with Quote Edit/Delete Posts Report Post to a Moderator       Go to the top of this page

Corsair VX550W Netzteil







Einleitung:

Nachdem wir kürzlich Corsairs VX450W Netzteil aus der neuen VX-Serie begutachten durften, liegt bereits das neueste Exemplar dieser Serie auf dem Redaktionsschreibtisch: das VX550W Netzteil.
Corsair möchte mit diesem zweiten Modell die VX-Serie nach oben abrunden, denn dem einen oder anderen könnten die Leistungsindikatoren und Austattung des VX450W eventuell nicht genügen. Beide Varianten sollen durch hohe Effizienz punkten und geben ihre +12Volt Leistung zumindest auf dem Papier über eine Leitung an die Verbraucher weiter. Diese Abkehr von der sonst üblichen 12V1 bis 12V4 und darüber hinaus angelegten Versorgungsaufteilungen ist inzwischen vermehrt zu beobachten und macht bei den Anforderungen aktueller Grafikkarten durchaus Sinn.
Die Netzteile werden dabei nach klaren Vorgaben von Corsair diesmal beim Netzteilriesen CWT gefertigt, wobei man neben eigenem Input natürlich deren jahrelange Erfahrung nutzt, um das Optimum an Fertigung, Technik und Qualität zu realisieren.
Wie sich das neue Corsair VX-550W Netzteil in der Praxis bewährt hat, erfahrt ihr wie immer in unserem ausführlichen Test, viel Vergnügen beim Lesen...




Lieferumfang:

Zum Vergrößern bitte die Bilder anklicken !
bitte klicken bitte klicken bitte klicken


- Netzteil in Retailverpackung.
- Kaltgeräteanschlußkabel.
- Befestigungsschrauben.
- Kabelbinder.
- Case Badge.
- Handbuch (5-sprachig).





Die technischen Daten Netzteil:

- Gehäusematerial: Stahl.
- 550 Watt Gesamtleistung.
- 140 Watt kombinierte Ausgangsleistung (+3,3 und +5 Volt).
- 492 Watt kombinierte Ausgangsleistung (+12 Volt).
- universeller Weitbereichseingang: 90-264 VAC für unterschiedliche Stromnetze.
- maximale Belastbarkeit der einzelnen Strom-Schienen:
- +3,3 Volt: 30 A
- +5,0 Volt: 20 A
- +12 Volt: 41 A.
- -12 Volt: 0,8 A.
- +5 Volt Standby: 3 A
- ATX Version: 2.2 .
- EMV-geschirmte Kabelstränge.
- Aktiv PFC (99%).
- 1x 120mm Lüfter, kugelgelagert.
- eloxierte Kühlkörper.
- OVP (Over Voltage Protection) - Überspannungsschutz.
- OPP (Over Power Protection) - Überlastungsschutz.
- NLO (No load Operation) - lastfreier Betrieb.
- SCP (Short Circuit Protection) - Schutz vor Kurzschlüssen.
- Standard-PS/2-Abmessungen (B×H×T): (150×86×140) mm.
- Gewicht: ca. 2,3 Kg.
- Fertigung nach RoSH Verordnung.
- MTBF: ca. 100.000 Stunden.
- aktueller Marktpreis: ca. 105 €.
- Garantie: 5 Jahre.




Der Testrechner:

CPU
Intel Core 2 Duo E6850
Mainboard
Gigabyte P35 DQ6
Arbeitsspeicher
Mushkin XP2-6400 DDR2-800 4GB-Kit
Grafikkarte
Asus Geforce 8800 GTX
Soundkarte
Sound Blaster X-Fi XtremeGamer Fatality
CPU-Kühler
Thermalright Ultra-120 extreme
CPU-Lüfter
Scythe
Festplatten System
2x Western Digital Raptor a´150GB (10000 U/min, S-ATA) Raid-0
Festplatten Backup
1x Samsung SpinPoint T166 500GB 16MB SATA II
DVD-Brenner
Plextor PX-760 SATA
DVD-ROM
Plextor PX-130A
Diskettenlaufwerk
Scythe Combo
Gehäuse
Lian Li PC-G70 B
Betriebssystem
Windows XP Prof. SP 2 PreSP3 und Vista Ultimate 64bit im Dualboot
Zubehör
2x 120mm Aerocool Turbine@Zalman Lüftersteuerung




Verarbeitung und Technik:

Zum Vergrößern bitte die Bilder anklicken !
bitte klicken bitte klicken bitte klicken

Analaog zum kleineren Bruder wurde auch das VX550W mit abriebfestem Pulverlack versehen, der über eine hohe mechanische Widerstandsfähigkeit verfügt.
Wabenförmige Aussparungen an der Frontpartie minimieren den Luftwiderstand der abzutransportierenden Abwärme aus dem Netzteil, was die Wirkung des Lüfters tatkräftig unterstützt. Im Gegensatz zum VX450W hat man aber leider nicht auf die Belüftungsöffnungen im hinteren Bereich verzichtet (durch rote Pfeile markiert), durch die warme Abluft aus dem PC-Gehäuse eindringen kann, was der Eigenkühlung des Netzteils nicht unbedingt förderlich ist.
Die Verarbeitung der Außenhülle bewegt sich auf hohem Niveau, die Abmessungen entsprechen der ATX-Norm und das Lüftergitter ragt nicht über das Netzteilgehäuse hinaus, so das es keine Versatzprobleme beim Einbau geben sollte, eine weise Entscheidung.

Zum Vergrößern bitte die Bilder anklicken !
bitte klicken bitte klicken

Eine schützende Kabelmuffe für den Hauptkabelstrang ist auch hier vorhanden, eine sehr gute Wahl, so wird der Kabelstrang gegen mechanische Belastungen stabilisiert. Unserer Meinung nach dürfte sie aber ruhig etwas ausgeprägter ausgeführt sein.
Ein Kabelmanagement wäre natürlich sehr komfortabel gewesen, aber die zusätzlichen Platinen und Anschlüsse stellen auch u.U. das Risko von korrosionsbedingten Spannungsabfällen dar, das wollen wir nicht verschweigen. Außerdem hat nur derjenige einen wirklichen Vorteil vom Kabelmanagement, der wenig interne Geräte versorgen muß. Wenn viele Geräte versorgt werden müssen, werden eben auch viele Kabelstränge verlegt und damit geht der optisch/logistische Vorteil sowieso verloren.
Corsair setzt auch bei diesem Netzteil auf die bewährten und kugelgelagerten Lüfter von Adda gesetzt, mit folgenden Eckdaten: 85,2 CFM (144 m³/h) bei 2200 U/min und 39,1 dBA. Das ganze wird natürlich durch die Thermoregelung des Corsair Netzteils entsprechend angepaßt geregelt, der Lüfter läuft zu keinem Zeitpunkt mit 2200 U/min. Diese Adda-Variante hätten wir uns auch beim VX450W gewünscht, der Lüfter hinterläßt insbesondere in Verbindung mit der Thermoregelung einen ausgewogeneren Eindruck und der Innenraum des Netzteils wird nicht mehr ganz so warm, obwohl eine unsinnige Kunststoffolie fast die Hälfte des Lüfters abdeckt.
Der Lüfter wurde selbstverständlich blasend ins Netzteilgehäuse montiert, was nicht nur die Abwärme aus dem Netzteil befördert, sondern auch durch seinen Sog zum Abtransport der Abwärme aus dem Bereich CPU/Mainboard usw. unterstützend beiträgt. Eine Entkoppelung des Lüfters findet leider nicht statt, die kleinen Gummiringe wurden scheinbar ersatzlos gestrichen.

Zum Vergrößern bitte die Bilder anklicken !
bitte klicken bitte klicken bitte klicken bitte klicken

Alle elektronischen Bauteile sind perfekt verlötet und zusammen mit der Platine sauber ins Gehäuse integriert worden, das zeugt einmal mehr von hohem Qualitätsstandard. Die Kühlkörper wurden schwarz lackiert, eigentlich überlüssig, eine Eloxierung gegen Korrosion hätte bei Aluminium völlig genügt. Bauartbedingt ermöglichen sie einen guten Airflow auch im Innenraum des Netzteils. Die Kondensatoren des primären Bereiches sind im Gegensatz zu anderen Netzteilen hochwertige 105°C Exemplare von Hitachi (blau), normalerweise werden 85°C Kondensatoren verwendet. Leider wurden noch keine Polymer-Aluminium Kondensatoren verwendet, was sich in späteren Netzteilserie hoffentlich ändert. Dazu gesellen sich ein großer Trafo und ein kleinerer für die notwendige 5V Standby-Leitung.
Der sekundäre Bereich offenbart eine kleine Platine für die Lüfterkontrolle, sowie entsprechende Sicherungsfunktionalität. Gegen Interferenzen wurden alle Spulen sehr akribisch gummiummantelt und isoliert, was u.a. auch dem berühmt-berüchtigten Netzteilpfeifen entgegenwirkt.
Die einzelne 12Volt Leitung entpuppt sich auch beim VX550W deutlich identifizierbar als Mehrfachleitung (roter Pfeil auf gelbe Leitungen), die aber zu einer Versorgungsleitung zusammengeschaltet wurde. Es gibt Hersteller wie Tagan, die dies über einen außen angebrachten separaten Schalter bewerkstelligen, hier ist es grundsätzlich Standardvorgabe.
Die Netzteil-Hersteller werden zu diesen Maßnahmen auch schon beinahe genötigt, denn viele Highendgrafikkarten verlangen bis zu 30 Ampere und die wären über aufgeteilte 12Volt Leitungen nicht lieferbar, was ein abruptes Ausschalten des Rechners zur Folge hätte.
Auch das Corsair Netzteil entspricht bereits der RoSH Umweltverordung (Restriction of certain Hazardous Substances) entsprechen, die ab Juli 2006 in Kraft getreten ist, womit eine separate Werbung auf dieses Attribut entfällt, es ist mittlerweile einfach Vorschrift...

Zum Vergrößern bitte die Bilder anklicken !
bitte klicken bitte klicken bitte klicken

Zum Vergrößern bitte die Bilder anklicken !
bitte klicken bitte klicken

Der Corsair Verkabelungstrang weist eine Länge von deutlich über 60cm auf, damit sollte eigentlich auch jeder Bigtower erfolgreich zu bestücken sein.

Im Einzelnen sind folgende Anschlußmöglichkeiten vorhanden:

- 2x Floppy-Anschluss.
- 6x 4 Pin Stromstecker.
- 6x S-ATA Connectoren.
- 1x PCI-Express 6-pin Stromanschluß.
- 1x PCI-Express 8-pin/6-pin Stromanschluß.
- 1x EPS/ATX12V 8-pin Stecker.
- 1x 12Volt P4 Stecker.
- 1x 20/24 Pin Mainboard-Stromanschluß (auftrennbar).

Die Flexibilität der einzelnen modularen Kabelstränge ist trotz der akkuraten Ummantelungen als sehr gut zu bewerten, da haben wir schon störrischere Exemplare begutachten dürfen. Der 24 Pin Mainboard-Stromanschluß entspricht der aktuellen ATX 2.0/2.2 Norm und kann bei Bedarf um 4 Anschlüsse gekürzt werden, in dem man ihn einfach wegklippst, dadurch entfällt ein Adapter für Mainboards mit 20-poligem Anschluß.
An die kommende Generation der DirectX10 Grafikkarten wurde ebenfalls gedacht, einer der beiden PCI-Express Stecker ist auch als 8-poliger ausgelegt worden, so daß wir dieses mal bezüglich der Verkabelung keinen Grund zur Kritik hatten.
Sehr gut gefallen hat uns einmal mehr die Easy-Swap Technik für die 4 Pin Stromstecker, denn nur so kann man ohne abgebrochene Fingernägel und herausgezogene Pins sehr komfortabel und sicher die Steckverbindungen lösen. Möglicherweise vermissen einige User Tachosignalgeber und temperaturgeregelte Anschlüsse, denen sei aber gesagt, daß sich genau dadurch nicht selten Probleme ergeben, denn es gibt nicht wenige Mainboards, die bei einer Drehzahl von unter 1000 U/min schlichtweg streiken.
Alle wichtigen Kabelstränge sind isoliert und ummantelt worden, das sieht nicht nur gut aus, sondern sorgt für Ordnung und minimiert Interferenzen.




Technische Aspekte zur aktuellen Netzteiltechnik:

1. Leistungsspezifikationen von Netzteilen:
Es zeigt sich immer wieder in unseren Tests, daß weder die vollmundigen Herstellerangaben auf den Typenschildern, noch die angegebenen Wattzahlen auch nur annähernd etwas über das tatsächliche Leistungsvermögen eines Netzteils aussagen! Die Erfahrung hat oft genug gezeigt, daß es auch 450 Watt Netzteile gibt, die schon bei geringster Last einbrechen und nicht im entferntesten die angegebenen Leistungsparameter abliefern können. Im Gegensatz dazu existieren sehr leistungsstarke 300 Watt Netzteile, die auch hochgerüstete Systeme durchaus ausreichend versorgen können. Es ist also offensichtlich, daß die Wattangabe absolut nichts über die Leistungsfähigkeit eines Netzteils aussagt, die aufgeklebten Herstellerangaben leider sehr oft ganz genauso wenig.
Um dergleichen zu vermeiden, greift man am besten zu leistungsseitig ausreichend dimensionierten Qualitätsnetzteilen.
Ein vor allem in der Übertaktergemeinde zentrales Problem und Qualitätskriterium ist die sogenannte "Stabilität" der einzelnen Spannungsschienen. Gerade bei qualitativ schlechteren oder schlichtweg überlasteten Netzteilen kann es dazu führen, daß die Spannungslinien von ihren Werten her einbrechen. So liefert ein Netzteil statt der erwünschten 12V dann etwa 11V und statt der benötigten 5V nur noch 4,7V. Während eine gewisse Abweichung im Bereich der Toleranz liegt (siehe ATX V2.03 Spezifikation) und vollkommen unproblematisch ist, führen gröbere Abweichungen in der Regel zu Instabilität und Systemabstürzen, die leider auch nicht immer sofort als Netzteilproblem verifizierbar sind...
Grundsätzlich ist es so:
Bei einem PC-Netzteil wird die Leistung oft mit der Angabe "Total DC Output" (DC steht für Gleichstrom) ausgewiesen. Dieser Maximal-Wert sagt aus, wieviel Watt das Netzteil insgesamt auf allen Leitungen liefern kann. "Combined Power" setzt sich hingegen aus der maximalen Leistung der +3,3-Volt- und +5-Volt-Leitung zusammen. Einzel belastet ist mehr möglich, aber zusammen eben nicht, da müssen dann entsprechende Abstriche hinsichtlich der Belastung gemacht werden.
Über die +12-Volt- und +5-Volt-Leitung werden früher u.a. Festplatten, CD-/ DVD-Drives und Disketten-Laufwerke mit Spannung versorgt. Die wichtigste Leitung war die 3,3-Volt-Leitung, über die das Mainboard den Prozessor (CPU), den Hauptspeicher (RAM), den AGP-Bus und nahezu alle PCI-Steckkarten mit Power versorgt. Vor dem Release der ATX-Spezifikation wurde diese sog. "I/O-Spannung" aus der 5-Volt-Leitung gewandelt. Ein gut dimensioniertes Netzteil sollte demnach ~30 Ampere auf der +5-Volt Leitung und ~25 Ampere auf der +3.3-Volt-Leitung liefern können, sowie mindestens 200 Watt Combined Power liefern.
Diese Empfehlung stammt aus der ATX 1.3 Zeit und hat sich entscheidend geändert, denn mittlerweile beziehen Core2 Duo und K8/K10 Systeme ihr Lebenselixier vermehrt, um nicht zu sagen hauptsächlich, aus den 12 Volt Leitungen. Intel hatte seinerzeit bekanntermaßen den ATX12V Stromstecker zur Entlastung eingeführt. Mittlerweile haben es die Hersteller auf den nForce 2/3/4 und Athlon 64 Boards nachempfunden und bietet dort einen entsprechenden 12V-Anschluß an, bei aktuellen Sockel 775 Boards sieht es nicht anders aus. Bei der nicht geringen Stromaufnahme dieser Mutterbretter ein wichtiger Schritt in die richtige Richtung. Selbstverständlich sollte diese +12 Volt Schiene (mittlerweile bedingt durch ATX 2.0: mindestens 2 Schienen) ausreichend dimensioniert sein und wenigstens 15 Ampere pro 12V-Schiene liefern können, je mehr desto besser.
Die Verteilung bei mehrere Leitungen ist ohnehin ein Problem, denn wenn einzelne 12V-Schienen nicht genügend Ampere liefern, schalten seriöse Hersteller diese Leitungen unter extremer Last zusammen und umgehen so eine mögliche Unterversorgung. Die Intel Norm sieht das zwar nicht vor, aber scheinbar hat Intel vergessen, was aktuelle schnelle Systeme aus der 12V-Leitung tatsächlich benötigen. Genau das ist auch der Grund, warum immer mehr Hersteller dazu übergehen, nur noch eine Leitung in ihren Datenblättern anzugeben, obwohl tatsächlich mehrere vorhanden sind, die aber real zusammengeschaltet wurden. Tagan z.B. bietet für einige aktuelle Modelle einen sogenannten Turboschalter an, über den der Anwender die Zusammenschaltung bei Bedarf manuell erledigen kann. Andere Hersteller erledigen dies automatisch, was wir als praktikabler empfinden, zumal so dem Anwender diese Entscheidung abgenommen wird, was in der Konsequenz über Stabilität oder Instabilität in jedem Fall richtig entscheidet.

2. Power Factor Correction (PFC):
"Power Factor Correction" oder kurz PFC ist ein in der EU für PC-Netzteile mittlerweile vorgeschriebener Standard, um die Stromaufnahme von Geräten für das Stromnetz weniger belastend auszulegen. Schaltnetzteile beziehen den Strom in Form kurzer Impulse, was dazu führt, daß die sinusförmige Netzspannung durch die Erzeugung harmonischer Oberwellen verzerrt wird. Insgesamt ist die komplexe Lastcharakteristik eines gewöhnlichen PC-Netzteils für das Stromnetz sehr ungünstig, da eine hohe Phasenverschiebung von Spannung und Strom sowie eine allgemein hohe Verzerrung der Wellenform auftritt. Je größer diese Phasenverschiebung ist, desto niedriger ist der "Power Factor" oder Leistungsfaktor eines Gerätes: Beträgt die Phasenverschiebung zwischen Spannung und Strom 90° ist der Leistungsfaktor 0 (0%, cos(90) = 0). Tritt hingegen keine Phasenverschiebung auf, d.h. sind Spannung und Strom perfekt synchron, ist der Leistungsfaktor 1 (100%, cos(0) = 1). Zu unterscheiden ist daher die sich aus der einfachen Rechnung Spannung*Stromstärke ergebende "Scheinleistung" sowie die den Phasenwinkel berücksichtigende "Wirkleistung": Stromstärke*Spannung*Leistungsfaktor. Der Leistungsfaktor beschreibt also zugleich das Verhältnis zwischen der an den Stromanschluß übertragenen "Wirkleistung" und der vom Verbraucher tatsächlich entnommenen "Scheinleistung" (Leistungsfaktor = Wirkleistung / Scheinleistung). Je weiter der Leistungsfaktor vom optimalen Wert 1 (100%) absinkt, desto höher ist die aus dem Stromnetz entnommene sogenannte "Blindleistung".
Passiv-PFC Systeme erreichen einen Leistungsfaktor von bis zu 0,8 durch Unterdrückung der harmonischen Oberwellen mittels eines relativ simplen, passiven Bausteins. Activ-PFC Systeme hingegen beziehen das Verhältnis zwischen der bestehenden Grundschwingung und den hinzugekommenen Oberwellen, den sogenannte Klirrfaktor, mittels einer integrierten Schaltung (IC) ein und regeln die Stromaufnahme gemäß dem Spannungsverlauf, als ob eine reine Widerstands-Last ohne Phasenverschiebung (d.h. Leistungsfaktor = 1) angeschlossen wäre. Active-PFC erreicht daher einen deutlich höheren Leistungsfaktor von über 95%. Zusätzlich ermöglicht die Schaltung eine einfachere Adaption an alle Stromnetze von 85 bis 265V.
Unser bevorzugtes Gerät, um den Wirkungsgrad in Zusammenarbeit mit einem Energy Monitor 3000 zu verifizieren, ist der grafische Leistungsmesser Peak Tech 2535. Mit diesem Gerät kann man sowohl Wirkleistung >Scheinleitung als auch Blindleistung und Leistungsfaktor ermitteln.
Allgemein handelt es sich bei PFC um eine Technologie, die der Verbesserung der allgemeinen Stromversorgung dienen soll, indem die komplexe Lastcharakteristik von Verbrauchern möglichst weit an jene einfacherer Geräte angepaßt wird.

3. Worin liegen die Neuerungen der ATX12V v2.0 bzw. 2.2 Norm?
Dies ist die modernste Spezifikation für Desktop Motherboards und Netzteilen, welche wesentliche Änderungen im Vergleich zum v1.3 Standard beeinhaltet:

- Die SATA Anschlüsse sind jetzt offiziell zertifiziert.
- Der Motherboard Hauptanschlussstecker wurde von 20 auf 24 Pins erweitert, um den Stromverbrauch auf dem PCI Express Bus besser verarbeiten zu können.
- Die neuen Spezifikationen fordern unter Volllast und typischer Last (50 Prozent) lediglich 70 Prozent Wirkungsgrad, bei geringer Belastung (bei unbelastetem Prozessor) sind sogar nur 60 Prozent gefordert. Als Empfehlungen nennt die Spezifikation 80 Prozent im typischen Lastfall, 75 Prozent unter Volllast und 68 Prozent bei geringer Belastung. Dazu der aktuelle ATX 2.2 Netzteil Design Guide.
Zu Thema Effizienz ist anzumerken, das sich wohl sehr wenig ändern wird, solange die überwiegende Mehrzahl der Käufer hauptsächlich auf Preis, Ausstattung und Leistung achtet und nicht bereit ist, für Energie-Effizienz mehr Geld zu bezahlen...
- Die 6 Pin Aux Stecker sind weggefallen.
- Die Schaltungstechnik wurde zu dualen 12V Ausgängen modernisiert, welches CPU und Peripheriegeräten größere Stabilität garantiert.
Zusätzlich wurde die +12V Ausgangsleistung insgesamt erhöht, um den Verbrauch des PCI Express Erweiterungsteckplatz auszugleichen.

4. Belüftung Lautstärke und Effizienz:
Zwar steht heute bereits auf beinahe jeder Netzteil-Verpackung werbewirksam "Silent", gut beraten ist man damit zwangsläufig allerdings noch nicht. Oft entpuppt sich, was beim Start noch erstaunlich leise klang bei entsprechender Belastung als störende Lärmquelle. Ursache dafür sind zumeist nicht nur die hochdrehenden, lastgesteuerten Lüfter, sondern oft auch ein von den überlasteten Spannungswandlern verursachtes Pfeifen oder Brummen, das nicht selten von heftigen Vibrationen begleitet wird.
Allgemein läßt sich im Hinblick auf Lautstärke und Belüftung bei Netzteilen folgendes attestieren:
Moderne ATX- Netzteile verfügen je nach Bauart und Qualität über eine Wirkungsgrad von rund 60-80%. Daraus ergibt sich, daß in Situationen, wo das Netzteil 150W Strom ans System liefert, im Gerät gleichzeitig gut 60Watt an Wärmeenergie entstehen, die abgeführt werden müssen um eine zu Instabilität führende Überhitzung zu vermeiden - ein nicht unbeträchtlicher Wert! Die meisten aktuellen Netzteile verfügen dafür entweder über eine Last-oder Temperatursteuerung (oder eine Kombination), d.h. die Drehzahl der Lüfter wird automatisch angepaßt - die Lautstärke steigt mit Last bzw. Temperatur. Alternativ gibt es Modelle mit manueller oder halbautomatischer Regelung. Hier ist jedoch Vorsicht geboten: Zu viel Lärmempfindlichkeit wird oft mit Überhitzung bezahlt. Wer also seine Hardware nicht riskieren oder dauernd zur Anpassung der Drehzahl hinter den Rechner krabbeln möchte, müßte diese zur Sicherheit entsprechend hoch einstellen und ist daher mit einem guten automatisch gesteuerten Netzteil bedeutend besser beraten.
Klar ist jedenfalls, daß z.B. Belüftungskonzepte, welche vorsehen, die vom System erhitzte Luft ausschließlich durch das Netzteil abzuführen, in doppelter Hinsicht problematisch sind: Erstens wird das Netzteil schlechter gekühlt, was unter Umständen wieder zu instabilen Spannungsschienen führen kann. Zweitens müssen die Lüfter des Netzteils schneller drehen, um das gleiche Maß an Kühlung zu erzielen und werden somit zu einem stärkeren Lärmfaktor. Es sei denn man dimensioniert den Netzteillüfter grundsätzlich so, daß ein Kompromiss möglich ist, z.B. durch einen volumenintensiven 120mm oder 140mm Lüfter.
Grundsätzlich sind darum Silentnetzteile, die mit einem oder 2 langsam drehenden 80mm Lüfterm daher kommen, ob ihrer Kühlleistung skeptisch zu beurteilen.

5. Schutzschaltungen:
Aktuelle hochwertige Netzteile verfügen über zahlreiche Schutzmechanismen, um unsere verbaute teure Hardware vor Beschädigungen durch Kurzschlüsse, Spannungsspitzen und anders geartete Irritationen zu schützen:

- OCP (Over Current Protection) - Schutz vor Stromspitzen.
- OTP (Over Temperature Protection) - Überhitzungsschutz.
- OVP (Over Voltage Protection) - Überspannungsschutz.
- OPP (Over Power Protection) - Überlastungsschutz.
- UVP (Under Voltage Protection) - Unterspannungsschutz.
- SCP (Short Circuit Protection) - Schutz vor Kurzschlüssen.
- NLO (No Load Operation) - Schutz vor lastlosen Operationen.

Sollten eure ins Auge gefassten Netzteile die allermeisten dieser Schutzmechanismen nicht beinhalten, solltet ihr von einem Kauf Abstand nehmen, denn diese Netzteile reissen bei entsprechenden Problemen nicht selten angeschlossene Hardware mit in den Abgrund...!




Die Montage:

Ein Netzteiltausch sollte auch den ungeübten Anwender vor keine größeren Probleme stellen, insofern schenken wir uns den detaillierten Ablauf, weisen aber auf wichtige Aspekte deutlich hin.
Die wichtigste Grundregel bei Bauarbeiten am eigenen Rechner ist, daß ihr alle Komponenten spannungsfrei macht.
Dazu müßt ihr als erstes das Netzteil ausschalten oder noch besser das Netzkabel abziehen.
Doch jetzt ist der Rechner noch nicht völlig spannungsfrei, da sich auf dem Mainboard und dem Netzteil noch geladene Kondensatoren befinden.
Diese Kondensatoren sollen im Betrieb Stromschwankungen ausgleichen.Normalerweise entladen sich die Bauteile von selbst, dies kann aber bis zu 10 Minuten dauern.
Wer hat aber schon so viel Zeit und möchte dies abwarten ? Mit einem kleinem Trick könnt ihr die Restelektrizität loswerden: Ihr müßt einfach noch einmal den Einschaltknopf drücken,nachdem ihr das Netzkabel entfernt habt.
Ihr werdet merken, daß die Lüfter nochmals kurz anlaufen und sofort wieder stillstehen.
Jetzt ist der Rechner garantiert spannungsfrei und das alte Netzteil kann problemlos gegen das Neue getauscht werden.

Vergeßt bitte nicht, euch vor den Arbeiten zu erden !




Der Test:

Vor dem Einbau des Netzteils und vor den eigentlichen Tests findet grundsätzlich eine erste Funktionskontrolle statt, den wir mit dem Power Supply Tester durchführen. Sollten sich hier bereits Probleme einstellen, wie z.B. ein nicht anlaufender Lüfter, brechen wir den Test grundsätzlich ab und das Netzteil geht return to Sender...
Der Power Good Wert (PG) gibt übrigens den Zeitraum an, in dem Mainboard und Netzteil miteinander korrespondieren und alles für ok befinden. Teile des Mainboards werden ja über das Slave Power Supply permanent mit +5V versorgt. Diese liegen dann auf der grünen Leitung, die vom Board zum Netzteil führt, an. Durch drücken des Einschaltknopfes wird diese Spannung auf Null gezogen, das Netzteil startet. Sollte irgendwas nicht i.O. sein, bricht das Netzteil seine Versorgung ab und der Rechner würde resetten. Im Normalfall liegt der Power Good Wert zwischen 100 und 500ms, was auch beim Corsair Netzteil mit 290ms der Fall war.

Zum Vergrößern bitte das Bild anklicken !
bitte klicken

Nachdem wir unseren 12-stündigen Belastungstest abgeschlossen hatten (Prime95 und 3DMark2005 im Loop), konnten wir die Meßwerte unserer eingesetzten Testprogramme (AIDA32, Everest, SiSoftSandra, MBM) vergleichen und haben sie danach zur besseren Fehlerkorrektur gemittelt sowie mit den direkt gemessenen Multimeter-Werten verglichen, wobei die real gemessenen Werte natürlich eine deutlich größere Relevanz aufweisen, als rudimentäre Software Resultate entsprechender Tools.
Die Effizienz haben wir mit Hilfe des grafischen Leistungsmessers Peak Tech 2535 und einem Energy Monitor 3000 von Voltcraft ermittelt.
Die Lautheit der Lüfter wurde ca. 15cm vom Lüfter entfernt mit einem geliehenen ACR-264-plus Messgerät verifiziert und dabei die Umgebungsgeräusche so weit wie möglich reduziert, um das Ergebnis nicht zu verfälschen. Laut DIN-Norm sollte der Abstand von Messgerät zum Testobjekt 100cm betragen, aber da wir nicht über einen schalltoten respektive schallarmen Raum verfügen, waren Kompromisse unumgänglich.
Mit dem Digitalen Temperaturmessgerät TL-305 haben wir während sämtlicher Testdurchläufe die Abluft des Netzteils direkt per Sensor gemessen und aufgezeichnet. Somit erhält der mögliche Käufer auch eine gute Übersicht bezüglich der zu erwartenden Kühlleistung respektive Eigenkühlung des Netzteils.



Die ATX V2.03 Spezifikation lässt folgende Grenzwerte zu :

Ausgang Toleranz Umin. UNom. Umax.
[%] Volt Volt Ampere
+12 V* 5 11,4 12,00 12,60
+5V 5 4,75 5,00 5,25
+3,3V 5 3,14 3,30 3,47
-5V 10 4,50 5,00 5,50
-12V 10 10,80 12,00 13,20
+5Vsb 5 4,75 5,00 5,25




Die Testwerte des Corsair Netzteil:


Richtspannung
+3.3V
+5V
+12V
niedrigster Wert
3,24V
4,88V
12,16V
höchster Wert
3,29V
4,94V
12,20V
durchschnittlicher Wert
3,27V
4,91V
12,18V





Auf den ersten Blick mögen die 140 Watt combined Power für die 3,3 Volt und 5 Volt Schiene arg knapp bemessen erscheinen, aber die Skeptiker können wir nachhaltig trösten, aktuelle Systeme belasten das Netzteil überwiegend auf den vorhandenen 12 Volt-Leitungen und dort sind 492 Watt, verteilt auf eine kombinierte Leitung, für jede Anforderung mehr als genug. Leistung und Stabilität sind makellos, unser Rechner produzierte keine Leistungseinbrüche oder besorgniserregenden Schwankungen, egal ob Idle oder Vollast, die Laststabilität stimmt in jedem Bereich perfekt, was auch für eine hohe Stützlast spricht.
Unser aktuelles Intel Core 2 Duo System (E6850@3600 MHZ) rief zusammen mit der Geforce 8800 GTX unter Last 305 Watt ab (übertaktet maximal 396 Watt). Unsere 8800 Ultra Grafikkarte konnten wir ebenfalls problemlos einsetzen, die zusammen mit dem restlichen System fast 455 Watt unter Vollast abfordert.
Die Lautstärke des Lüfters ohne Last war subjektiv als minimal wahrnehmbar zu deklarieren, im Idle Modus konnten wir den Lüfter kaum identifizieren, und so ergaben sich sehr gute 22,5 dBA bei 890 U/min. Unter Last und wahrnehmbarer Drehzahlsteigerung des Lüfters stellt sich die Situation etwas anders dar, hier steigert sich der Lüfter auf geringfügig lautere 27 dBA bei 1230 U/min, was aber immer noch in die Kategorie "sehr leise" einzuordnen ist.
Die Netzteilelektronik trat geräuschtechnisch kaum in Erscheinung, weder Pfeiffgeräusche noch anders geartete Störgeräusche waren zu identifizieren.
Die Eigenkühlung des Netzteils funktioniert besser als beim VX450W, unter Last konnten wir keine Netzteilgehäuse-Temperaturen über 48°C messen, im Idle Modus 41°C bei 20°C Zimmertemperatur. Die warme Abluft erreicht unter Last Temperaturen bis zu 46°C, das zur Information für all diejenigen, die sich über den warmen Luftstrom aus dem Netzteilgehäuse wundern. Die Werte sind aber ok, unter 20% Last liegen diese Werte bei knapp 38°C.
Beim VX450W hatten wir die im Vergleich zu anderen Netzteilen doch etwas höhren Temperaturen reklamiert, diese resultierten aus den relativ kleinen Kühlkörpern des Netzteils und der sehr spät ansprechenden Thermoregelung für den Adda-Lüfter. Dies wurde offensichtlich beim VX550W korrigiert, dafür sprechen die niedrigeren Temperaturen bei geringfügig gestiegener Lautstärke.
Noch eine kleine Erklärung zur dBA Definition:
Menschen hören im allgemeinen bei 1000 Hz am Besten, der dBA-Wert nimmt Bezug darauf: ein Geräusch bei 18000 Hz nimmt man entsprechend schwächer war, als eines bei 1000 Hz, und der dBA-Wert ist entsprechend darauf umgerechnet.
Bei 80% Last konnten wir eine Effizienz von knapp 83,5% attestieren, ein ausgezeichneter Wert, damit gewinnt auch dieses Netzteil der VX-Baureihe das interne Duell gegen die HX-Serie. Bei 20% Last wurden immerhin noch 81% Effizienz erreicht, ein ebenso gutes Ergebnis. Darüber hinaus stehen 1,05 Watt Stromverbrauch im Standbymodus (ausgeschalteter Rechner) zu Buche, auch diesen Wert können wir im Plusbereich verbuchen...

Achtung:
Wir müßen an dieser Stelle deutlich darauf hinweisen, daß die im Review angegebenen Resultate sich ausnahmslos auf den zum Test verwendeten Aufbau mit den verwendeten Test-Systemen beziehen...



Die wichtigsten Leistungsdaten und Temperaturen aller bisher von uns getesteten Netzteile im Vergleich:

Netzteil Ø Spannungswerte max. Effizienz Temp-Idle Temp-Last
Aerocool Turbine Power ATX 450Watt 3,35V 5,02V 12,19V 74% 30° 38°
Akasa Ultra quiet 80+ 500Watt 3,36V 5,08V 12,05V 82,5% 34,5° 43°
be quiet! BQT P6 Dark Power 520Watt 3,30V 4,98V 12,07V 78% 35° 42°
be quiet! BQT P6 Dark Power Pro 600Watt 3,32V 5,05V 12,03V 78% 31° 44°
be quiet! BQT P6 Dark Power Pro 850Watt 3,36V 5,01V 12,15V 83% 33° 46°
be quiet! BQT P6 Dark Power Pro 1000Watt 3,34V 5,01V 12,12V 84% 37,5° 47°
be quiet! Straight Power BQT ES-600Watt 3,34V 5,04V 12,07V 79,5% 32° 45°
Corsair HX620W 3,32V 5,05V 12,08V 83,5% 35° 44,5°
Corsair VX450W 3,25V 4,96V 12,13V 84% 46° 55°
Corsair VX550W 3,27V 4,91V 12,18V 83,5% 41° 48°
Enermax Liberty 500 Watt Yate-Loon NMT3 3,35V 5,08V 12,09V 79% 35° 46°
Enermax Liberty ELT 620Watt AWT 3,36V 5,09V 12,13V 79% 34° 45°
Enermax Infiniti 720Watt 3,37V 5,07V 12,19V 86,5% 31° 43°
Etasis ET EFN-560 550Watt 3,28V 4,99V 11,96V 78% 51° 58°
Mushkin XP-650 650Watt 3,32V 5,01V 12,11V 81% 35,5° 45°
Nexus NX-8050 500Watt 3,27V 5,01V 12,24V 82,5% 35,5° 45,5°
Revoltec Chromus II 400 Watt 3,33V 4,81V 11,97V 77% 34° 44°
Seasonic S12 Energy Plus 550Watt 3,34V 5,03V 12,05V 84,5% 32° 42°
Seasonic M12 600Watt 3,35V 5,04V 12,14V 82% 32° 42°
Seasonic S-12 600Watt 3,34V 5,06V 12,14V 82% 32° 43°
NoiseMagic Seasonic S12 500Watt F/2GML 3,29V 5,07V 12,05V 81% 32° 43°
Seasonic S-12 430Watt 3,30V 5,03V 12,06V 80% 31° 41°
Seasonic S-12 II 500Watt 3,35V 4,99V 12,05V 87% 33° 43°
Silverstone Decathlon DA 750Watt 3,39V 5,16V 12,20V 82% 34° 44°
Silverstone Element ST40EF 400Watt 3,29V 5,09V 12,30V 85% 32° 42°
Silverstone Element ST50EF 500Watt 3,32V 5,01V 12,10V 81% 32° 44°
Silverstone Olympia OP 650Watt 3,36V 4,99V 12,10V 82,5% 33,5° 43,5°
Silverstone Strider ST56F 560Watt 3,39V 4,90V 12,22V 80% 31° 43°
Silverstone Strider ST60F 600Watt 3,35V 5.03V 12,34V 78% 31° 42°
Silverstone Strider ST75F 750Watt 3,34V 5.02V 12,30V 81% 30° 40°
Silverstone Strider ST85F 850Watt 3,31V 5.09V 12,05V 81% 32,5° 41,5°
Silverstone Zeus ST56ZF 560Watt 3,31V 5.08V 12,19V 76% 34° 45°
Silverstone Zeus ST75ZF 750Watt 3,31V 4,98V 12,06V 79% 30° 42°
Tagan TG420-U02 i-Xeye 420Watt 3,32V 5,01V 12,02V 75% 36° 46°
Tagan TG700-U26 i-Xeye II 700Watt 3,31V 5,03V 12,15V 82% 33,5° 43,5°
Tagan TG480-U15 Easycon 480Watt 3,32V 5,01V 12,10V 75% 34° 46°
Tagan TG480-U22 2Force 480Watt 3,34V 5,12V 12,13V 70% 35° 45°
Tagan TG600-U25 Dualengine 600Watt 3,29V 5,12V 12,22V 79% 34° 44°
Tagan TG600-U35 EasyCon XL 600 Watt 3,37V 5,13V 12,15V 79% 34° 44°



Netzteil dBA-Idle dBA-Last Standby-Verbrauch Preis
Aerocool Turbine Power ATX 450Watt 23 dBA 30 dBA 2,6 Watt 90 €
Akasa Ultra quiet 80+ 500Watt 23,5 dBA 26,5 dBA 7,3 Watt 89,90 €
be quiet! BQT P6 Dark Power 520Watt 24 dBA 30 dBA 1,9 Watt 119 €
be quiet! BQT P6 Dark Power Pro 600Watt 26 dBA 34 dBA 2,2 Watt 149,90 €
be quiet! BQT P6 Dark Power Pro 850Watt 25 dBA 36 dBA 3,6 Watt 249,90 €
be quiet! BQT P6 Dark Power Pro 1000Watt 26 dBA 39 dBA 2,3 Watt 299,90 €
be quiet! Straight Power BQT ES-600Watt 20 dBA 29 dBA 1,5 Watt 99,90 €
Corsair HX620W 23,5 dBA 26 dBA 1,2 Watt 130 €
Corsair VX450W 21 dBA 25 dBA 0,9 Watt 89 €
Corsair VX550W 22,5 dBA 27 dBA 1,05 Watt 105 €
Enermax Liberty 500 Watt Yate-Loon NMT3 19 dBA 28 dBA 1,9 Watt 133 €
Enermax Liberty ELT 620Watt AWT 27 dBA 32 dBA 1,9 Watt 169 €
Enermax Infiniti 720Watt 26 dBA 37 dBA 1,9 Watt 214 €
Etasis ET EFN-560 550Watt 0 dBA 36 dBA 3,6 Watt 179 €
Mushkin XP-650 650Watt 25 dBA 30 dBA 1,3 Watt 104 €
Nexus NX-8050 500Watt 22,5 dBA 26 dBA 1,1 Watt 125 €
Revoltec Chromus II 400 Watt 23 dBA 33 dBA 2,7 Watt 89 €
Seasonic S12 Energy Plus 550Watt 23 dBA 25 dBA 0,5 Watt 140€
Seasonic M12 600Watt 23 dBA 25 dBA 1,3 Watt 160 €
Seasonic S-12 600Watt 22 dBA 28 dBA 1,4 Watt 135 €
NoiseMagic Seasonic S12 500Watt F/2GML 20 dBA 28 dBA 1,3 Watt 134 €
Seasonic S-12 430Watt 19 dBA 24 dBA 1,8 Watt 89 €
Seasonic S-12 II 500Watt 22 dBA 25,5 dBA 0,7 Watt 90 €
Silverstone Decathlon DA 750Watt 24,9 dBA 33 dBA 2,2 Watt 179 €
Silverstone Element ST40EF 400Watt 24 dBA 29 dBA 1,8 Watt 79 €
Silverstone Element ST50EF 500Watt 27 dBA 32 dBA 2,5 Watt 88 €
Silverstone Olympia OP 650 Watt 24,5 dBA 33,5 dBA 1,9 Watt 148 €
Silverstone Strider ST56F 560Watt 29 dBA 33 dBA 5 Watt 114 €
Silverstone Strider ST60F 600Watt 31 dBA 36 dBA 9 Watt 144 €
Silverstone Strider ST75F 750Watt 29 dBA 35 dBA 4 Watt 165 €
Silverstone Strider ST85F 850Watt 24 dBA 35,5 dBA 1,9 Watt 225 €
Silverstone Zeus ST56ZF 560Watt 32 dBA 41 dBA 7 Watt 120 €
Silverstone Zeus ST75ZF 750Watt 27 dBA 33 dBA 3 Watt 183 €
Tagan TG420-U02 i-Xeye 420Watt 27 dBA 34 dBA 2,8 Watt 90 €
Tagan TG700-U26 i-Xeye II 700Watt 26 dBA 31 dBA 1,1 Watt 160 €
Tagan TG480-U15 Easycon 480Watt 25 dBA 35 dBA 2,9 Watt 99 €
Tagan TG480-U22 2Force 480Watt 25 dBA 36 dBA 2,7 Watt 95 €
Tagan TG600-U25 Dualengine 600Watt 27 dBA 31 dBA 0,8 Watt 160 €
Tagan TG600-U35 EasyCon XL 600 Watt 25 dBA 29 dBA 2 Watt 160 €





Fazit:

Die VX-Serie erhält mit dem VX550W einen krönenden Abschluß, so es denn schon das letzte Netzteil dieser Serie sein sollte. Technik, Stabilität und Laufruhe suchen in dieser Preisklasse lange nach wirklichen Konkurrenten und wenn überhaupt, kommen sie bestenfalls von Seasonic selbst.
Das Manko der erhöhten Innenraumtemperatur vom VX450W wurde beim VX550" weitestgehend abgestellt, in dieser Hinsicht hat man also entsprechend nachgearbeitet und Schwachstellen korrigiert, wenn man mal von den hinteren Belüftungsschlitzen und der Lüfterfolie absieht, die nun völlig überflüssig sind. Das Thema sollte man grundsätzlich nicht auf die leichte Schulter nehmen, denn eine hervorragende Laufruhe ist das eine, die erhöhte Ausfallsicherheit auf Grund von thermischen Sicherheitsvorkehrungen das andere. An diesem Punkt herrscht noch Optimierungsbedarf, sei es nun durch größer dimensionierte Kühlkörper, und/oder durch eine andere Kennlinie für den Lüfter, der dann entweder früher hochdreht oder grundsätzlich schon ab 20% Last mit 150 bis 200 Umdrehungen schneller dreht. Dem Kühlhaushalt würde es gut tun und das Netzteil wäre trotzdem alles, aber kein Radaubruder...
Zur besseren Übersicht noch einmal die wichtigsten Eckdaten unseres Tests in einer kurzen Zusammenfassung:

Plus:
- sehr gute Verarbeitung.
- ausgezeichnete Stabilität.
- hervorragende Effizienz (auch unter 20% Last).
- sehr robuste Pulver-Lackierung.
- sehr leiser Betrieb.
- actives PFC.
- keine Störgeräusche durch die Netzteilelektronik.
- gute Integration des Netzteils ins Kühlmanagement des Gehäuses.
- Verwendung hochwertiger Bauteile.
- mehr als ausreichende Kabellängen (über 50cm).
- sehr gute Austattung.
- Netzteilgehäuse ATX-konform.
- sehr lange Garantiezeit (5 Jahre).
- annehmbares Preis-Leistungsverhältnis (105,- €).

Minus:
- hintere Belüftungsschlitze und Lüfterfolie sind fehl am Platze.

Ansonsten haben wir wenig bis nichts zu beanstanden, die Austattung stimmt und der Preis für das Gebotene auch, zumal er auf dem Markt weiter nach unten korrigiert werden dürfte. Wer also noch ein hervorragendes Netzteil in dieser Leistungskategorie sucht, wird mit dem VX550W sehr schnell fündig...





Gesamtergebnis unseres Reviews:

Das Corsair VX550W Netzteil erhält den PC-Experience-Award in Gold !






Weiterführende Links:

Corsair


Corsair bei Caseking

Wir bedanken uns bei Corsair sehr herzlich für die Bereitstellung des Testexemplars und für den freundlichen Support.


euer PC-Experience.de Team

Cerberus



__________________
"Wir werden von Schildbürgern regiert. Die fahren mit dem Boot aufs Meer, werfen den Schatz über Bord, und markieren die Stelle am BOOT...!"

Unsere Suchfunktion , unsere Artikel und Workshops , unsere Forenregeln , Kein Support über E-Mail oder PN ! .
26.10.2007 12:33 Cerberus is offline Homepage of Cerberus Search for Posts by Cerberus Add Cerberus to your Buddy List
Tree Structure | Board Structure
Post New Thread Thread is closed
PC-Experience » Hardware Reviews : » Reviews : » Corsair VX550W Netzteil


Powered by Burning Board © 2001-2014 WoltLab GbR
Designed by PC-Experience.de, online seit 06.August 2002
Copyright © 2002 - 2014 PC-Experience.de